Latest News

QUT research aims to convert carbon dioxide into sustainable fuel

carbon dioxide

The goal of tackling global warming by turning carbon dioxide into fuel could be one step closer, as Queensland University of Technology (QUT) researchers use a supercomputer to identify a group of “single-atom” catalysts that could play a key role. 

Researchers from QUT’s Centre for Materials Science were part of an international study that used theoretical modelling to identify six metals – nickel, niobium, palladium, rhenium, rhodium, zirconium. These metals were found to be effective in a reaction that can convert carbon dioxide into sustainable, clean energy sources. 

The study published in Nature Communications was led by associate professor Liangzhi Kou and involved other QUT researchers Professor Aijun Du, Professor Yuantong Gu and Dr Lin Ju. 

The research was conducted by modelling the experiments using the National Computational Infrastructure at the Australian National University, looking at how single atoms of the metals would react with two-dimensional pieces of “ferroelectric” materials, Kou said. 

Ferroelectric materials have a positive charge on one face and negative charge on another. This polarisation can be reversed when a voltage is applied. 

In the theoretical modelling, the researchers found that adding the atom of the catalyst metal to the ferroelectric material resulted in converting the greenhouse gas into a desired chemical fuel. 

Once the polarity is reversed, the state will be preserved to act as a catalyst in converting the carbon dioxide. 

While single-atom catalysts used in reducing carbon dioxide was proposed a decade ago, this research significantly takes the field forward. 

“We have designed a special chemical catalyst; it can convert the greenhouse gas CO2 into the desired chemical fuels,” Kou said. 

“The conversion efficiency can be controlled using a feasible approach. It means we for the first time developed the abilities to speed up or slow down, even switch of the chemical reaction. 

“Carbon dioxide is the main reason of global warming due to the greenhouse effect, to convert it into the chemical fuels is not only important for our environments, but also helpful to solve the energy crisis.” 

As the first author on the study, Ju said the research provided a guide to design novel catalysts which could produce significant impacts for the chemical industry. 

“The long-term goal in this area of research is to find ways to turn carbon dioxide into clean energy sources,” Kou said. 

“The results of this study could eventually lead to a way of adding a coating to engines or industrial systems that would convert carbon dioxide, instead of releasing more of the gas into the atmosphere.” 

Leave a Reply

Send this to a friend